

Inhalt

PLgel GPC-Säulen	3
InfinityLab PlusPore-Säulen	5
InfinityLab PolyPore	6
InfinityLab ResiPore	7
InfinityLab MesoPore	8
InfinityLab OligoPore	9
PL Rapide-Säulen	10
Narrow-Bore-Säulen	11
InfinityLab PLgel Olexis	12
PLgel MIXED-Säulen	13
PLgel 20 µm MIXED-A	14
PLgel 10 µm MIXED-B	15
PLgel 5 µm MIXED-C	16
PLgel 5 µm MIXED-D	17
PLgel 3 µm MIXED-E	18
PLgel MIXED-LS	19
PL HFIPgel	
EnviroPrep-Säulen	21
PLgel Individual Pore Size-Säulen mit individuellen Porengrößen	22
PLgel Preparative-Säulen	24
Publikationen von Agilent	26
Agilent GPC/SEC-Analysesysteme	27

1981 1984 1993 1976 1999 PLgel-Säulen, PLgel MIXED-Säulen, **GPC-Software EasiCal-Standards PL-GPC 220 Einzelstandards und** PL aquagel-Säulen Dedizierte Software Neues Format verkürzt Marktführendes **Standard-Kits** MIXED-Säulen für rationalisiert die Probenvorbereitungszeit Hochtemperatur-GPCund erhöht die Polymer Laboratories bessere Datenqualität und Berechnungen für die System auch für die wird zur Entwicklung neuartige Säulentypen zur GPC/SEC. Kalibriergeschwindigkeit. schwierigsten Proben bei marktführender Produkte Analyse wasserlöslicher Temperaturen bis 220 °C. für die organische Polymere. GPC/SEC gegründet. EasiCal

PLGEL GPC-SÄULEN

Für die Trennung nach Molekulargewicht mit organischen Lösemitteln

Robust

Das PLgel-Medium ist ein hochvernetztes Polystyrol-Divinylbenzol (PS-DVB)-Gel, das sich durch eine unübertroffene Stabilität gegenüber vielen Lösemitteln und Temperaturen auszeichnet.

Innovativ

Mit der Polymeranalyse haben auch wir uns weiterentwickelt. Moderne HPLC-Anwender profitieren nun von den neuesten Innovationen von Agilent bei GPC-Säulen, die die Geschwindigkeit und die Auflösung im Rahmen vieler Applikationen drastisch verbessern.

Zuverlässig

Seit über 40 Jahren stellt Agilent zuverlässige PLgel-Säulen für wichtige Industrieapplikationen her, die reproduzierbare Ergebnisse liefern.

Innovationen von Agilent

- InfinityLab PlusPore schnelle GPC der nächsten Generation für viele verschiedene Verbindungen
- InfinityLab PLgel Olexis optimierte Leistung bei Hochtemperatur-Analysen
- PLgel MIXED LS rauscharme Lichtstreuanalysen
- PLgel Preparative schnelle Probenvorbereitung und -fraktionierung sowie Offline-Analyse

Nicht sicher, wo Sie beginnen sollten? Mehr Infos:

- Step-by-Step Method Development for GPC/SEC (5991-7272EN)
- Polymer-to-Solvent Reference Table for GPC/SEC (5991-6802EN)
- Instrument Setup for Fast GPC (5991-7191EN)

2004 2007 2009 2015 2017 PlusPore-Säulen und PLgel Olexis-Säulen 1260 Infinity 1260 Infinity II **PL MultiSolvent EasiVial-Standards GPC-Säulen** Multidetektor-Suite Multidetektor-Optimiert für die und PolarGel-Säulen **GPC/SEC-System** Die neueste Ergänzung Polyolefinanalyse mit

Neue Säulentypen stellen Materialien mit großem Porenvolumen für eine verbesserte Auflösung bereit und EasiVial-Standards ermöglichen die weitere Vereinfachung der Kalibrierverfahren. Polyolefinanalyse mit höchster Auflösung und Datenqualität selbst bei Proben mit ultrahohen Molekulargewichten.

Mit 1260 Infinity
MDS wird jede LC zu
einem leistungsstarken
Multidetektor-GPC-System
und mit PolarGel-Säulen
können polare Proben in
jedem Lösemittelsystem
analysiert werden.

Erste Wahl für die genaue, reproduzierbare Polymeranalyse. Beliebige Kombination von Lichtstreuungs-, Viskosimetrieund Brechungsindexdetektion zur Ermittlung von absoluten Molekulargewichten und -größen.

der InfinityLab-GPC-Produktfamilie bietet Lösemittelflexibilität für verschiedenste GPCie- Analysen auf nur einer on Säule.

PLGEL GPC-SÄULEN

Lösemittelkompatibilität

Die richtige Wahl der Lösemittel für die GPC ist entscheidend. So können sekundäre Wechselwirkungen vermieden werden, die zu inkorrekten Molekulargewichtsbestimmungen führen können. Um solche Wechselwirkungen zu vermeiden, müssen die Lösemittel eine ähnliche Polarität besitzen wie die Analyten.

Die beste Lösung für Ihre Proben finden Sie in der Referenztabelle "Polymer-To-Solvent Table for GPC/SEC", Publikation 5991-6802EN.

Kompatible Lösemittel

Polarität des	
Lösemittels	Lösemittel
6,0	Perfluoralkane
7,3	Hexan
8,2	Cyclohexan
8,9	Toluol
9,1	Ethylacetat
9,1	Tetrahydrofuran (THF) (nur stabilisiert)
9,3	Chloroform (nur stabilisiert)
9,3	Methylethylketon (MEK)
9,7	Dichlormethan
9,8	Dichlorethen
9,9	Aceton
10,0	o-Dichlorbenzol (o-DCB)
10,0	Trichlorbenzol (TCB)
10,2	m-Cresol
10,2	o-Chlorphenol (o-CP)
10,7	Pyridin
10,8	Dimethylacetamid (DMAc)
11,3	n-Methylpyrrolidon (NMP)
12,0	Dimethylsulfoxid (DMS0)
12,1	Dimethylformamid (DMF)

Bedingungen für PLgel-Säulen

- Können bei Temperaturen bis zu 220 °C und bei Drücken bis zu 150 bar eingesetzt werden.
- Tolerieren organische Lösemittel mit pH-Werten zwischen 1 und 14; mischbare organische Lösemittel können bis zu 10 % Wasser enthalten.
- Werden in Ethylbenzol geliefert; das Lösemittel kann ohne Gefahr von Zersetzung für unterschiedliche Polymeranalysen ausgetauscht werden.

Porosität der PLgel-Fritten

Medientyp	Porosität (µm)
PLgel 3 µm	2
PLgel 5 µm	2
PLgel 10 µm	5
PLgel 20 µm	10

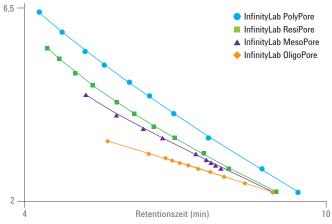
Bestellinformationen

Zubehör für PLgel-Säulen

Beschreibung	Menge (VE)	BestNr.
Werkzeug zur Entfernung der Fritte, nur für Säulen mit Gewinde	1	PL1310-0001
Fritten-Kit (2 µm) für Säulen mit Gewinde, ID: 7,5 mm	5	PL1310-0002
Fritten-Kit (5 µm) für Säulen mit Gewinde, ID: 7,5 mm	5	PL1310-0012
Fritten-Kit (10 µm) für Säulen mit Gewinde, ID: 7,5 mm	5	PL1310-0036
PLgel 10 µm, Säulenreparaturgel	1	PL1410-0101
PLgel 5 µm, Säulenreparaturgel	1	PL1410-0501
Säulen-Verbindungsschrauben, 1/16-Zoll-Leitung	5	PL1310-0007
Ferrulen, 1/16-Zoll-Leitung	5	PL1310-0008
Anschlussleitung, Länge: 10 cm, ID: 0,01 Zoll	10	PL1310-0048

Weiterführende Hinweise zu Lösemitteln finden Sie in "GPC/SEC Column User Guide", Publikation 5991-3792EN.

INFINITYLAB PLUSPORE-SÄULEN


GPC-Partikel der nächsten Generation

- Die Trennung vieler üblicher Proben erfolgt in weniger als 10 Minuten.
- Hohe Effizienzen und große Porenvolumen sorgen für sehr hohe Auflösung.
- Die Trennung ist für vier häufige vorkommende Molekulargewichtsbereiche (MW-Bereich) optimiert.

Bei der InfinityLab PlusPore-Produktfamilie von GPC-Säulen kommen hocheffiziente Medien mit kleinem Partikeldurchmesser und optimierten Porenvolumina zum Einsatz, um die Trennleistung insgesamt zu maximieren.

Jedes PS-DVB-Partikel besitzt mehrere Porengrößen, was die Effizienz weiter erhöht und trotz breitem Molekulargewichtsbereich nicht zu Verschiebungen führt.

Diese Säulen stellen mit Blick auf Geschwindigkeit und Auflösung eine erhebliche Verbesserung gegenüber herkömmlicher GPC-Technologie dar — ohne Einbußen bei wichtigen Faktoren wie Zuverlässigkeit und Stabilität.

InfinityLab PlusPore-Kalibrierungskurven

Selektionshilfe - PlusPore

Säule	MW-Bereich (g/mol) (PS)	nominale Partikelgröße (µm)	Typische Effizienz (p/m)	Empfohlene Kalibriersubstanzen	Porosität der Fritte (µm)
InfinityLab PolyPore	200 bis 2 000 000	5	>60 000	EasiCal PS-1 oder EasiVial PS-H	2
InfinityLab ResiPore	bis 500 000	3	>80 000	EasiCal PS-2 oder EasiVial PS-M	2
InfinityLab MesoPore	bis 25 000	3	>80 000	Polystyrol S-L-10-Kit	2
InfinityLab OligoPore	bis 3300	6	>55 000	Polystyrol S-L2-10-Kit	2

Agilent InfinityLab Optimieren Sie die Effizienz der LC-Arbeitsabläufe

Wie können Sie die LC-Arbeitsabläufe effizienter gestalten, damit Sie mehr Zeit für Ihre analytischen Prioritäten haben?

Entdecken Sie Agilent InfinityLab – ein optimiertes Portfolio von LC-Geräten, -Säulen und -Zubehör, die perfekt miteinander harmonieren.

Mehr Infos unter: www.agilent.com/chem/infinitylab

INFINITYLAB POLYPORE

Unübertroffene Auflösung allgemeiner Polymere

- · Optimiert für die Trennung von großen Polymeren und breiten MW-Verteilungen.
- Die hocheffizienten Partikel ermöglichen kürzere Analysenläufe bei überlegener Auflösung.
- Höchstleistungen über den breitest möglichen Molekulargewichtsbereich.

Eigenschaften

nominale Partikelgröße: 5 μm

Linearer Molkulargewichts-

200 bis 2 000 000 g/mol (PS-Äquivalent) Arbeitsbereich:

Garantierte Trennleistung

der Säule: >60 000 p/m

Empfohlene Anzahl Säulen/Sets: 2x 300 mm

1 ml/min (ID: 7,5 mm): ≈ 30 bar (435 psi) Typischer Druck:

pro 300 mm (THF bei 25 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min 150 bar (2175 psi) Maximaldruck: Maximale Temperatur:

Empfohlene Kalibriersubstanzen:

• EasiVial PS-H in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine begueme 12-Punkt-Kalibrierung

(2-ml-Probenflaschen: PL2010-0201, 4-ml-Probenflaschen: PL2010-0200)

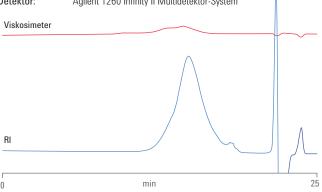
• EasiCal PS-1 für eine 10-Punkt-Kalibrierung durch einfaches Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Bestellinformationen

Beschreibung	BestNr.
InfinityLab PolyPore, 2,1 x 250 mm	PL1913-5500
InfinityLab PolyPore, 4,6 x 250 mm	PL1513-5500
InfinityLab PolyPore, 7,5 x 300 mm	PL1113-6500
InfinityLab PolyPore-Vorsäule, 4,6 x 50 mm	PL1513-1500
InfinityLab PolyPore-Vorsäule, 7,5 x 50 mm	PL1113-1500

Typische Applikationen

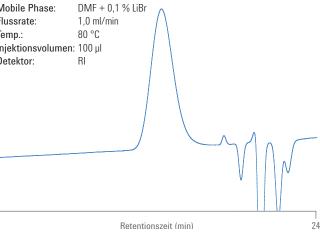

Polystyrole, Polycarbonate, Polyurethane, Polysiloxane

Bedingungen

Säulen: 2 x InfinityLab PolyPore, 7,5 x 300 mm

Mobile Phase: Toluol 1,0 ml/min Flussrate: 60 °C Temperatur:

Detektor: Agilent 1260 Infinity II Multidetektor-System


Analyse von Polydimethylsiloxan (PDMS)

Bedingungen

Säulen: 2 x InfinityLab PolyPore, 7,5 x 300 mm

Handelsübliches PMMA Probe: Mobile Phase: DMF + 0,1 % LiBr Flussrate:

Temp.: Injektionsvolumen: 100 μl Detektor: RI

Polymethylmethacrylat in DMF

INFINITYLAB RESIPORE

Hochauflösung von Harzen und Polykondensaten

- Optimiert für die Trennung von Polymeren mit mittelgroßen Molekulargewichten.
- · 3-µm-Partikel bieten höchste Effizienz und Auflösung.
- Hervorragende Leistung über einen breiten Molekulargewichtsbereich.

InfinityLab ResiPore-Säulen sind die optimale Wahl für die Analyse von Harzen und Polykondensaten mit komplexer Molekulargewichtsverteilung einschließlich Oligomergehalt. Durch Kombination einer kleinen 3-µm-Partikelgröße und einem großem Porenvolumen erzielen die hocheffizienten InfinityLab ResiPore-Säulen eine maximale Auflösung dieser Polymere mit mittlerem Molekulargewicht.

Eigenschaften

nominale Partikelgröße: 3 µm

Linearer Molkulargewichts-

Arbeitsbereich: bis 500 000 g/mol (PS-Äquivalent)

Garantierte Trennleistung

der Säule: >80 000 p/m

Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 50 bar (725 psi) pro 300 mm (THF bei 25 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min Maximaldruck: 150 bar (2175 psi)

Maximaldruck:150 bar (217)Maximale Temperatur:110 °CEmpfohlene Anzahl Säulen/Sets:2x 300 mm

Empfohlene Kalibriersubstanzen:

- EasiVial PS-M in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung
- (2-ml-Probenflaschen: PL2010-0301, 4-ml-Probenflaschen: PL2010-0300)
- EasiCal PS-2 für eine 10-Punkt-Kalibrierung durch einfaches Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Bestellinformationen

Beschreibung	BestNr.
InfinityLab ResiPore, 2,1 x 250 mm	PL1913-5300
InfinityLab ResiPore, 4,6 x 250 mm	PL1513-5300
InfinityLab ResiPore, 7,5 x 300 mm	PL1113-6300
InfinityLab ResiPore-Vorsäule, 4,6 x 50 mm	PL1513-1300
InfinityLab ResiPore-Vorsäule, 7,5 x 50 mm	PL1113-1300

Typische Applikationen

Epoxidharze, Polyesterharze, Silikonöle, Polyolefinwachse

Bedingungen Säulen: 2 x InfinityLab ResiPore, 7,5 x 300 mm Mobile Phase: THF (stabilisiert) Flussrate: 1,0 ml/min Detektor: RI

Schnelle Analyse von handelsüblichen Farbharzen

Bedingungen

Säulen: 2 x InfinityLab ResiPore, 7,5 x 300 mm

Mobile Phase: THF

Flussrate: 1,0 ml/min

Injektionsvolumen: 20 µl

Detektor: UV, 254 nm

Hochauflösende Analyse eines handelsüblichen Polyesterharzes und seiner Oligomeren

11

INFINITYLAB MESOPORE

Unübertroffene Trennung von Präpolymeren und Harzen mit niedrigen Molekulargewichten

- Optimiert für die Trennung von Polymeren mit niedrigem Molekulargewicht, Präpolymeren und Additiven.
- 3-µm-Partikel bieten höchste Effizienz und Auflösung.
- Optimal geeignet für die Identifikation von höheren Oligomeren, Weichmachern und Rückständen.

InfinityLab MesoPore-Säulen wurden für optimale Ergebnisse bei der Analyse von Polymermaterialien mit hohem Oligomeranteil entwickelt. Durch Kombination einer Partikelgröße von 3 µm und einem großen Porenvolumen sorgen InfinityLab MesoPore-Säulen für eine hohe Auflösung bei der Trennung von Polymeren mit niedrigerem Molekulargewicht wie Präpolymeren, Harzen, Polyolen und Siloxanen.

Eigenschaften

nominale Partikelgröße: 3 µm

Linearer Molkulargewichts-

Arbeitsbereich: bis 25 000 g/mol (PS-Äquivalent)

Garantierte Trennleistung

der Säule: >80 000 p/m

Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 50 bar (725 psi)

pro 300 mm (THF bei 25 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min Maximaldruck: 150 bar (2175 psi)

110 °C Maximale Temperatur:

Empfohlene Anzahl Säulen/Sets: 1x 300 mm (optimiertes System),

2x 300 mm (andere Systeme)

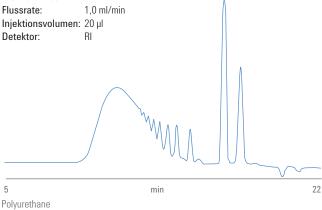
Empfohlene Kalibriersubstanzen:

- EasiVial PS-L in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine begueme 12-Punkt-Kalibrierung (2-ml-Probenflaschen: PL2010-0401, 4-ml-Probenflaschen: PL2010-0400)
- EasiVial PEG bietet die gleiche 12-Punkt-Kalibrierung in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für polare Lösemittel und andere Kalibrierungen (2-ml-Probenflaschen: PL2070-0201, 4-ml-Probenflaschen: PL2070-0200)

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Bestellinformationen

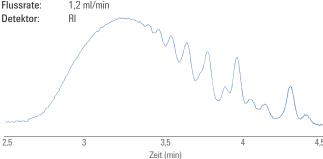
Beschreibung	BestNr.
InfinityLab MesoPore, 2,1 x 250 mm	PL1913-5325
InfinityLab MesoPore, 4,6 x 250 mm	PL1513-5325
InfinityLab MesoPore, 7,5 x 300 mm	PL1113-6325
InfinityLab MesoPore-Vorsäule, 4,6 x 50 mm	PL1513-1325
InfinityLab MesoPore-Vorsäule, 7,5 x 50 mm	PL1113-1325


Typische Applikationen

Präpolymere, Harze, Polyole, Siloxane

Bedingungen

Säulen: 2 x InfinityLab MesoPore, 7,5 x 300 mm


Mobile Phase: THF Flussrate: Injektionsvolumen: 20 µl Detektor:

Bedingungen

InfinityLab MesoPore, 4,6 x 250 mm Säulen:

Mobile Phase: THF (stabilisiert) Flussrate: 1,2 ml/min

Schnelle Epoxidharzanalyse

INFINITYLAB OLIGOPORE

Hervorragende Auflösung von Oligomerproben mit analytischen und präparativen Säulen

- · Optimierte Partikel für die Trennung von Einzelverbindungen nach Molekulargewicht.
- · Einzigartige Partikel mit ultrahohem Porenvolumen sorgen für Höchstleistungen bei der Trennung von niedermolekularen Verbindungen.
- · Individuelle Identifikation von Oligomeren, Additiven und Verunreinigungen.

In InfinityLab OligoPore-Säulen befinden sich einzigartige Polymerpartikel mit hohem Porenvolumen, um bei niedermolekularen Verbindungen und Oligomeren eine extrem hohe Auflösung zu erzielen. Die äußerst reproduzierbare und vorhersehbare Trennung erlaubt sowohl eine einfache Chargenidentifikation (Fingerprinting) als auch die Quantifizierung von Rückständen, Verunreinigungen und Additiven.

>55 000 p/m

Eigenschaften

nominale Partikelgröße: 6 µm

Linearer Molkulargewichts-

Arbeitsbereich:

Garantierte Trennleistung

der Säule:

Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 30 bar (435 psi)

pro 300 mm (THF bei 25 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min Maximaldruck: 150 bar (2175 psi)

Maximale Temperatur: 110 °C

Empfohlene Anzahl Säulen/Sets: 1x 300 mm (optimiertes System),

2x 300 mm (andere Systeme)

bis 3300 g/mol (PS-Äquivalent)

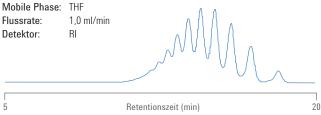
Empfohlene Kalibriersubstanzen:

- EasiVial PS-L in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung (2-ml-Probenflaschen: PL2010-0401, 4-ml-Probenflaschen: PL2010-0400)
- EasiVial PEG bietet die gleiche 12-Punkt-Kalibrierung in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für polare Lösemittel und andere Kalibrierungen (2-ml-Probenflaschen: PL2070-0201, 4-ml-Probenflaschen: PL2070-0200)

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Bestellinformationen

Beschreibung	BestNr.
InfinityLab OligoPore, 2,1 x 250 mm	PL1913-5520
InfinityLab OligoPore, 4,6 x 250 mm	PL1513-5520
InfinityLab OligoPore, 7,5 x 300 mm	PL1113-6520
InfinityLab OligoPore, 25 x 300 mm	PL1213-6520
InfinityLab OligoPore-Vorsäule, 4,6 x 50 mm	PL1513-1320
InfinityLab OligoPore-Vorsäule, 7,5 x 50 mm	PL1113-1320


Typische Applikationen

Polyurethane, Epoxidharze, Polystyrole

Bedingungen

Säulen: 2 x InfinityLab OligoPore, 7,5 x 300 mm

Flussrate: RI Detektor:

Schnelle Isolierung der einzelnen Oligomeren einer Polystyrolprobe

Bedingungen

2 x InfinityLab OligoPore, 7,5 x 300 mm Säulen:

THF (stabilisiert) Mobile Phase: Flussrate: 1,0 ml/min

Detektor: 1260 Infinity II ELSD (Zerstäubung = 40 °C, Verdampfung = 60 °C,

Gas = 1.5 SLM)

Ultrahohe Auflösung von Oligomeren und Additiven in Epoxidharz-Chargen

PL RAPIDE-SÄULEN

Maximale Geschwindigkeit und Auflösung auf Systemen mit hoher Dispersion

- Hochgeschwindigkeitsanalysen sogar mit älteren Systemen bzw.
 Detektoren mit hoher Dispersion.
- Maximiert den Probendurchsatz bestehender Systeme bei minimalem Investitionsaufwand.
- Ein unkomplizierter, einfach einsetzbarer Ersatz für ältere Technik.

Die PL Rapide-Säule bietet hohe Geschwindigkeiten und Auflösungen in Systemen mit großer Dispersion durch Kombination von hocheffizienten PLgel-Medien und hohen Flussraten.

Hohe Flussraten minimieren den Effizienzverlust durch große Totvolumina älterer Geräte und Detektoren mit großen Flusszellen. Trotz der höheren Flussrate kann die Analysendauer und damit der Lösemittel-Gesamtverbrauch gesenkt werden.

Weiterführende Informationen finden Sie in "Instrument Setup for Fast GPC" (5991-7191EN).

Eigenschaften

Typischer Druck: <30 bar pro Säule

Maximale Flussrate: 10 mm ID: 3,0 ml/min

7,5 mm ID: 1,5 ml/min

Maximaldruck: 150 bar (2175 psi) 100 bar (1450 psi)

Maximale Temperatur: 220 °C (Rapide H), 150 °C (Rapide M),

110 °C (Rapide L und F)

Empfohlene Anzahl

Säulen/Sets: 3x 100 mm oder 2x 150 mm

Empfohlene Kalibriersubstanzen:

 EasiVial PS-H in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung

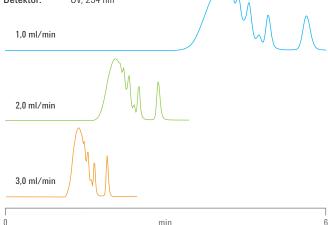
(2-ml-Probenflaschen: PL2010-0201, 4-ml-Probenflaschen: PL2010-0200)

• EasiCal PS-1 für eine 10-Punkt-Kalibrierung durch einfaches Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Typische Applikationen

Epoxidharze, Prozessüberwachung, Fließinjektionsanalysen


Bedingungen

Säulen: PL Rapide L, 10 x 100 mm

Probe: Epoxidharz Mobile Phase: THF

Flussrate: 1,0, 2,0 und 3,0 ml/min

Detektor: UV, 254 nm

PL Rapide-Säulen zeigen bei höheren Flussraten einen minimalen Verlust an Auflösung

Beschreibung	MW-Bereich (g/mol)	Garantierte Effizienz (p/m)	BestNr.
PL Rapide H, 7,5 x 150 mm	500 bis 10.000.000	>40 000	PL1113-3100
PL Rapide H, 10 x 100 mm	500 bis 10 000 000	>40 000	PL1013-2100
PL Rapide M, 7,5 x 150 mm	200 bis 2 000 000	>60 000	PL1113-3500
PL Rapide M, 10 x 100 mm	200 bis 2 000 000	>60 000	PL1013-2500
PL Rapide L, 7,5 x 150 mm	200 bis 500 000	>80 000	PL1113-3300
PL Rapide L, 10 x 100 mm	200 bis 500 000	>80 000	PL1013-2300
PL Rapide F, 7,5 x 150 mm	bis 3300	>55 000	PL1113-3120
PL Rapide F, 10 x 100 mm	bis 3300	>55 000	PL1013-2120

NARROW-BORE-SÄULEN

Senkung des Lösemittelverbrauchs

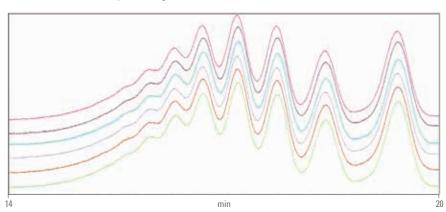
- Senken Sie den Lösemittelverbrauch um 70 % (4,6 mm) bis 93 % (2,1 mm).
- Lagern Sie weniger Lösemittel und erhöhen Sie die Arbeitssicherheit.
- Reduzieren Sie die Auswirkungen auf die Umwelt und die Entsorgungskosten für chlorierte und flüchtige organische Lösemittel.

Agilent unterstützt Kunden, die die Sicherheit am Arbeitsplatz verbessern und die Umweltauswirkungen verringern wollen – durch eine Senkung des Lösemittelverbrauchs dank Säulen von Agilent mit einem Durchmesser von 4,6 mm oder 2,1 mm.

Diese Narrow-Bore-Säulen senken die Flussraten ohne Einbußen bei der Leistung, der Stabilität und der Lösemittelkompatibilität.

Tipps

Narrow-Bore-Säulen reagieren sehr viel empfindlicher auf Gerätedispersion als Säulen mit größerem Durchmesser. Vor der Installation sollten Sie die Hinweise in "Instrument Setup for Fast GPC" (5991-7191EN) beachten.


Bei GPC mit geringen Flussraten erzielen Sie mit dem Agilent 1290 Infinity II Brechungsindexdetektor (G7162B) eine hohe Auflösung und Empfindlichkeit.

Bedingungen

Säulen: 2 x InfinityLab OligoPore, 2,1 x 250 mm

Probe: Polystyrol
Mobile Phase: THF
Flussrate: 0,06 ml/min

Detektor: 1290 Infinity II Brechungsindexdetektor

Die Kombination einer Säule mit einem Durchmesser von 2,1 mm mit einem 1290 Infinity II Brechungsindexdetektor mit niedriger Dispersion ermöglicht eine Senkung des Lösemittelverbrauchs um 94 % im Vergleich zu einer Säule mit 7,5-mm Durchmesser.

Beschreibung	Linearer MW- Arbeitsbereich (g/mol) (PS)	Garantierte Effizienz (p/m)	BestNr.
InfinityLab PolyPore, 2,1 x 250 mm	200 bis 2 000 000	>60 000	PL1913-5500
InfinityLab PolyPore, 4,6 x 250 mm	200 bis 2 000 000	>60 000	PL1513-5500
InfinityLab ResiPore, 2,1 x 250 mm	bis 500 000	>80 000	PL1913-5300
InfinityLab ResiPore, 4,6 x 250 mm	bis 500 000	>80 000	PL1513-5300
InfinityLab MesoPore, 2,1 x 250 mm	bis 25 000	>80 000	PL1913-5325
InfinityLab MesoPore, 4,6 x 250 mm	bis 25 000	>80 000	PL1513-5325
InfinityLab OligoPore, 2,1 x 250 mm	bis 3300	>55 000	PL1913-5520
InfinityLab OligoPore, 4,6 x 250 mm	bis 3300	>55 500	PL1513-5520

INFINITYLAB PLGEL OLEXIS

Optimale Leistung und Lebensdauer für Polymere mit hohen Molekulargewichten

- Optimiertes Design für die Analyse von Polyolefinen und Hochleistungspolymeren.
- 13-µm-Partikel sorgen für Stabilität und Auflösung ohne Abbau durch Scherkräfte.
- · Lange Lebensdauer auch bei sehr hohen Temperaturen.

Eigenschaften

nominale Partikelgröße: 13 µm

Linearer Molkulargewichts-

Arbeitsbereich: 2000 bis 10 000 000 g/mol (PS-Äquivalent)

Garantierte Trennleistung

der Säule: >30 000 p/m

Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 8 bar (116 psi) pro 300 mm (THF bei 20 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min

Maximaldruck:150 bar (2175 psi)Maximale Temperatur:220 °CEmpfohlene Anzahl Säulen/Sets:3x 300 mm

Empfohlene Kalibriersubstanzen:

- EasiVial PS-H in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung (2-ml-Probenflaschen: PL2010-0201, 4-ml-Probenflaschen: PL2010-0200)
- EasiCal PS-1 für eine 10-Punkt-Kalibrierung durch einfaches Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

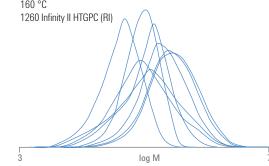
Bestellinformationen

Beschreibung	BestNr.
InfinityLab PLgel Olexis, 7,5 x 300 mm	PL1110-6400
InfinityLab PLgel Olexis-Vorsäule, 7,5 x 50 mm	PL1110-1400

Typische Applikationen

Polyolefine

Bedingungen


Detektor:

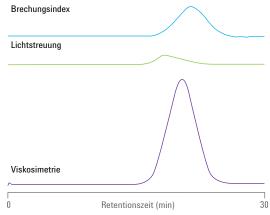
Säulen: 3 x InfinityLab PLgel Olexis, 7,5 x 300 mm

Probe: Polyolefine

Mobile Phase: Trichlorbenzol + 0,0125 % BHT

Flussrate: 1,0 ml/min Injektionsvolumen: 200 μ l Temperatur: 160 °C

Zuverlässige Vorhersage der Leistung eines Polymers dank akkurater MW-Verteilungen


Bedingungen

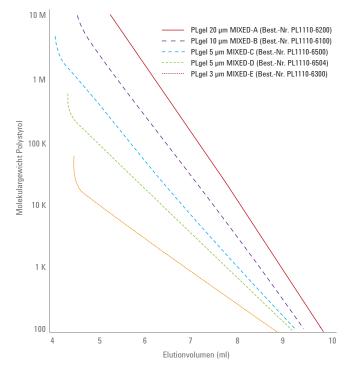
Säulen: 3 x InfinityLab PLgel Olexis, 7,5 x 300 mm

Mobile Phase: Trichlorbenzol + 0,0125 % BHT

Injektionsvolumen: $200 \, \mu$ l Temperatur: $160 \, ^{\circ}$ C

Detektor: 1260 Infinity II HTGPC (RI) + Zweiwinkel-LS + Viskosimetrie

Genaues Molekulargewicht und Informationen über Verzweigungen von Polyethylen aufgrund der Daten von drei Detektoren


PLGEL MIXED-SÄULEN

Vereinfachte Analyse für verschiedenste Proben

- Die einfachste GPC-Analyselösung, da das Chromatogramm die Molekulargewichtsverteilung unmittelbar darstellt.
- MIXED-Säulen enthalten Medien mit bestimmten, einheitlichen Porengrößen, die präzise gemischt werden, um über den angegebenen Molekulargewichtsbereich eine lineare Kalibrierungskurve zu erhalten.
- Die Alternative zur Erweiterung des Molekulargewichtsbereich, d. h. eine Serienschaltung von Säulen mit jeweils einer einheitlichen Porengröße, führt oft zu Kalibrierungskurven mit Sprüngen und verzerrten Molekulargewichtsverteilungen und ist daher einer MIXED-Säule unterlegen.
- Lineare Kalibrierungskurven bieten eine schnelle visuelle Identifizierung von Peaks und vereinfachen die Datenverarbeitung.
- Durch Serienschaltung gleicher MIXED-Säulen kann die Auflösung unkompliziert verbessert werden. So wird die gewünschte Präzision erreicht, ohne auf die Vorteile einer linearen Kalibrierungskurve verzichten zu müssen.
- Dank der strengen Fertigungskontrolle der Kalibrierungskurven werden reproduzierbare Chromatogramme mit jeder neuen Säule erhalten.

Tipp

Die Retention ändert sich mit zunehmenden Alter der Säule. Daher ist eine regelmäßige Kalibrierung so wichtig für richtige Ergebnisse.

Kalibrierungskurven mit PLgel MIXED

Literatur

Meehan, E. (1998) Size exclusion chromatography columns from Polymer Laboratories. In: Chi-San Wu (Ed.) Column Handbook for Size Exclusion Chromatography. Academic Press, New York, USAPress, New York, USA.

PLGEL 20 µm MIXED-A

Für Materialien mit sehr hohen Molekulargewichten

- Extrem hohe Ausschlussgrenze je nach Molekulargewicht der Applikation.
- Große Partikelgröße, angepasst an den Molekulargewichtsbereich für optimale Leistung.
- Großporige Fritte und große Partikel minimieren Abbau der Proben durch Scherkräfte.

Eigenschaften

Linearer Molkulargewichts-

Arbeitsbereich: 2000 bis 40 000 000 g/mol (PS-Äquivalent)

Garantierte Trennleistung

der Säule: >18 000 p/m

Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 3 bar (44 psi)

pro 300 mm

0,3 ml/min (ID: 4,6 mm): \approx 2,4 bar (35 psi) pro

250 mm (THF bei 20 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min

4,6 mm ID: 0,5 ml/min

Maximaldruck: 150 bar (2175 psi)

Maximale Temperatur: 220 °C Empfohlene Anzahl Säulen/Sets: 4x 250 mm oder 4x 300 mm

Empfohlene Kalibriersubstanzen:

- EasiVial PS-H in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung (2-ml-Probenflaschen: PL2010-0201, 4-ml-Probenflaschen: PL2010-0200)
- EasiCal PS-1 für eine 10-Punkt-Kalibrierung durch einfaches Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Bestellinformationen

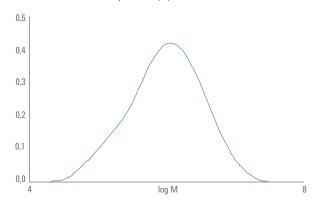
Beschreibung	BestNr.
PLgel 20 µm MIXED-A, 7,5 x 300 mm	PL1110-6200
PLgel 20 µm MiniMIX-A, 4,6 x 250 mm	PL1510-5200
PLgel 20 µm Vorsäule, 7,5 x 50 mm	PL1110-1220
PLgel 20 µm MiniMIX-A-Vorsäule, 4,6 x 50 mm	PL1510-1200

Tipp

Hohe Temperaturen bewirken einen beschleunigten Abbau. Damit Ihre Ergebnisse richtig bleiben, müssen Sie regelmäßig kalibrieren.

Typische Applikationen

Polyolefine, Polybutadiene, Stärken, Polyisoprene

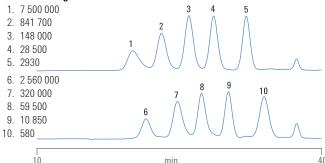

Bedingungen

Säulen: 4x PLgel 20 μm MIXED-A, 7,5 x 300 mm

Mobile Phase: TCB + 0,015 % BHT

Flussrate: 1,0 ml/min Temperatur: $160 \,^{\circ}\text{C}$

Detektor: 1260 Infinity II HTGPC (RI)


Agilent PLgel 20 µm MIXED-A-Säulen können die gesamte Molekulargewichtsverteilung von Polyethylen mit ultrahohem Molekulargewicht (UHMWPE) erfassen.

Bedingungen

Säulen: 4x PLgel 20 μm MIXED-A, 7,5 x 300 mm

Probe: EasiCal PS-1
Mobile Phase: THF
Flussrate: 1,0 ml/min
Detektor: UV, 254 nm

Peakerkennung

Die Trennung von Polystyrol-Standards demonstriert den besonders breiten Arbeitsbereich einer MIXED-A-Säule.

PLGEL 10 µm MIXED-B

Maximale Auflösung für Applikationen mit sehr hohen Molekulargewichten und bei hohen Temperaturen

- Der breite Molekulargewichts-Arbeitsbereich maximiert die Anwendbarkeit der Säule.
- Die 10-µm-Partikel sorgen für eine bessere Auflösung bei gleichzeitig hoher thermischer Stabilität.
- · Der breite Applikationsbereich vereinfacht die Säulenwahl.

Eigenschaften

Maximaldruck:

Linearer Molkulargewichts-

Arbeitsbereich: 500 bis 10 000 000 g/mol (PS-Äquivalent)

Garantierte Trennleistung

der Säule: >35 000 p/m

Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 10 bar (145 psi) pro

300 mm

0,3 ml/min (ID: 4,6 mm): \approx 8 bar (116 psi) pro

250 mm (THF bei 20 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min

4,6 mm ID: 0,5 ml/min 150 bar (2175 psi)

Maximale Temperatur: 220 °C

Empfohlene Anzahl Säulen/Sets: 3x 250 mm oder 3x 300 mm

Empfohlene Kalibriersubstanzen:

 EasiVial PS-H in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine begueme 12-Punkt-Kalibrierung

(2-ml-Probenflaschen: PL2010-0201, 4-ml-Probenflaschen: PL2010-0200)

• EasiCal PS-1 für eine 10-Punkt-Kalibrierung durch einfaches Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

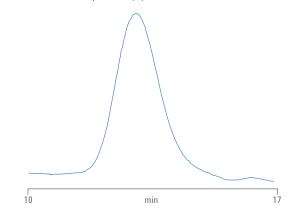
Bestellinformationen

Beschreibung	BestNr.
PLgel 10 μm MIXED-B, 7,5 x 300 mm	PL1110-6100
PLgel 10 µm MiniMIX-B, 4,6 x 250 mm	PL1510-5100
PLgel 10 µm Vorsäule, 7,5 x 50 mm	PL1110-1120
PLgel 10 µm MiniMIX-B-Vorsäule, 4,6 x 50 mm	PL1510-1100

Tipp

Hohe Temperaturen bewirken einen beschleunigten Abbau. Damit Ihre Ergebnisse richtig bleiben, müssen Sie regelmäßig kalibrieren.

Typische Applikationen


Polyolefine, Polybutadiene, Stärken, Polyisoprene

Bedingungen

Säulen: 2x PLgel 10 μ m MIXED-B, 7,5 x 300 mm

Mobile Phase: o-Chlorphenol Flussrate: 1,0 ml/min Temperatur 100 °C

Detektor: 1260 Infinity II HTGPC (RI)

Analyse schwieriger Polyethylenterephthalat (PET)-Proben mit PLgel MIXED-B-Säulen von Agilent

Bedingungen

Mobile Phase:

Polyethylene

Säulen: 3x PLgel 10 µm MIXED-B, 7,5 x 300 mm

TCB

Flussrate: 1,0 ml/min
Temperatur: 160 °C
Detektor: 1260 Infinity II HTGPC (RI)

HDPE

LDPE

min

PLGEL 5 µm MIXED-C

Für einfache Analysen über einen breiten Molekulargewichtsbereich

- Hervorragende Reproduzierbarkeit von Chromatogrammen bei Säulenwechsel vereinfacht Vergleiche und Überlagerungen.
- Optimierter Molekulargewichtsbereich für die allgemeine Polymeranalyse.
- Die lineare Kalibrierungskurve sorgt für eine gleich bleibende Auflösung im gesamten Molekulargewichtsbereich.

Eigenschaften

Maximaldruck:

Linearer Molkulargewichts-

Arbeitsbereich: 200 bis 2 000 000 g/mol (PS-Äquivalent)

Garantierte Trennleistung

der Säule: >50 000 p/m

Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 30 bar (435 psi) pro

300 mm

0,3 ml/min (ID: 4,6 mm): ≈ 24 bar (348 psi) pro

250 mm (THF bei 20 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min

4,6 mm ID: 0,5 ml/min 150 bar (2175 psi)

Maximale Temperatur: 150 °C

Empfohlene Anzahl Säulen/Sets: 2x 250 mm oder 2x 300 mm

Empfohlene Kalibriersubstanzen:

• EasiVial PS-H in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung

(2-ml-Probenflaschen: PL2010-0201, 4-ml-Probenflaschen: PL2010-0200)

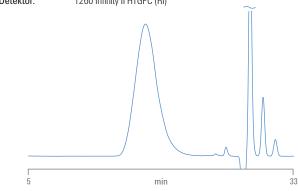
• EasiCal PS-1 für eine 10-Punkt-Kalibrierung durch einfaches Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Bestellinformationen

Beschreibung	BestNr.
PLgel 5 µm MIXED-C, 7,5 x 300 mm	PL1110-6500
PLgel 5 µm MiniMIX-C, 4,6 x 250 mm	PL1510-5500
PLgel 5 µm-Vorsäule, 7,5 x 50 mm	PL1110-1520
PLgel 5 µm MiniMIX-C-Vorsäule, 4,6 x 50 mm	PL1510-1500

Typische Applikationen

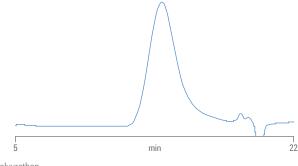

Polystyrole, Polyurethane, Polycarbonate, Polysiloxane

Bedingungen

Säulen: 2x PLgel 5 μm MIXED-C, 7,5 x 300 mm

Mobile Phase: THF Flussrate: 1,0 ml/min

Detektor: 1260 Infinity II HTGPC (RI)



GPC misst den Additiv-Gehalt in PVC

Bedingungen

Säulen: 2x PLgel 5 µm MIXED-C, 7,5 x 300 mm

Detektor: 1260 Infinity II HTGPC (RI)

Polyurethan

PLGEL 5 µm MIXED-D

Für die unkomplizierte Analyse von Polymeren mittlerer Größe

- Schnelle visuelle Identifizierung von Polymeren mit niedrigem Molekulargewicht, Weichmachern und Oligomeren.
- Bietet hervorragende Auflösung der niedrigen Molekulargewichte bei hoher Temperaturstabilität.
- Optimaler Molekulargewichtsbereich für viele durch radikalische Polymerisation hergestellte Polymere und Polykondensate.

Eigenschaften

Linearer Molkulargewichts-

Arbeitsbereich: 200 bis 400 000 g/mol (PS-Äquivalent)

Garantierte Trennleistung

der Säule: >50 000 p/m

Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 30 bar (435 psi) pro

300 mm

0,3 ml/min (ID: 4,6 mm): \approx 24 bar (348 psi) pro

250 mm (THF bei 20 °C, TCB bei 140 °C)

Maximale Flussrate: 7,5 mm ID: 1,5 ml/min

4,6 mm ID: 0,5 ml/min

Maximaldruck: 150 bar (2175 psi)

Maximale Temperatur: 150 °C

Empfohlene Anzahl Säulen/Sets: 2x 250 mm oder 2x 300 mm

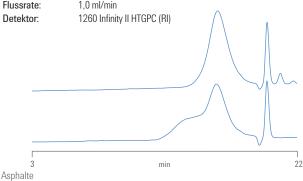
Empfohlene Kalibriersubstanzen:

- EasiVial PS-M in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine begueme 12-Punkt-Kalibrierung
- (2-ml-Probenflaschen: PL2010-0301, 4-ml-Probenflaschen: PL2010-0300)
- EasiCal PS-2 für eine 10-Punkt-Kalibrierung durch einfaches Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Bestellinformationen

Beschreibung	BestNr.
PLgel 5 µm MIXED-D, 7,5 x 300 mm	PL1110-6504
PLgel 5 µm MiniMIX-D, 4,6 x 250 mm	PL1510-5504
PLgel 5 µm-Vorsäule, 7,5 x 50 mm	PL1110-1520
PLgel 5 µm MiniMIX-D-Vorsäule, 4,6 x 50 mm	PL1510-1504


Typische Applikationen

Epoxidharze, Silikonöle, Polyesterharze, Polyolefine

Bedingungen

Säulen: 2x PLgel 5 μm MIXED-D, 7,5 x 300 mm

Mobile Phase: THF Flussrate: 1,0 ml/min

Bedingungen

Säulen: 2x PLgel 5 μm MIXED-D, 7,5 x 300 mm

Mobile Phase: DMF + 0,1 % LiBr
Flussrate: 1,0 ml/min
Temperatur: 70 °C
Detektor: RI

PLGEL 3 µm MIXED-E

Oligomere und Polymere mit einem MW bis zu 25 000

- · MIXED-Bett-Säulen mit höchster Effizienz.
- · Verbesserte Produktivität durch schnelle Analyse.
- Optimierte Partikelgröße für Polymere mit niedrigem Molekulargewicht, Oligomere und Additive.

Eigenschaften

Linearer Molkulargewichts-

Arbeitsbereich: Garantierte Trennleistung bis 25 000 g/mol (PS-Äquivalent)

der Säule:

Maximaldruck:

7,5 x 300 mm: >80 000 p/m

4,6 x 250 mm: >70 000 p/m

Höchste Effizienz/Auflösung nur in Hochleistungs-

geräten mit geringem Totvolumen.

1 ml/min (ID: 7,5 mm): \approx 50 bar (725 psi)

Typischer Druck: 1 ml/min (ID: 7,5 mn

pro 300 mm

0,3 ml/min (ID: 4,6 mm): \approx 42 bar (609 psi)

pro 250 mm (THF bei 20 °C) 7,5 mm ID: 1,5 ml/min

Maximale Flussrate: 7,5 mm ID: 1,5 ml/mir

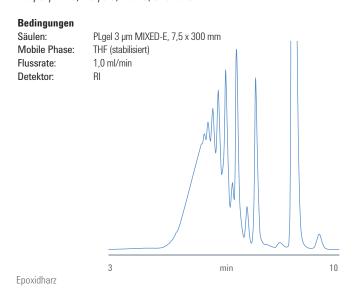
4,6 mm ID: 0,5 ml/min 180 bar (2611 psi)

Maximale Temperatur: 110 °C

Empfohlene Anzahl Säulen/Sets: 1-3x 250 mm oder 1-3x 300 mm

Empfohlene Kalibriersubstanzen:

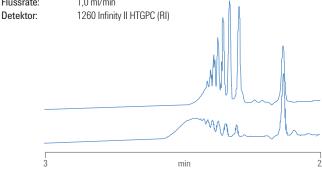
- EasiVial PS-L in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung
- (2-ml-Probenflaschen: PL2010-0401, 4-ml-Probenflaschen: PL2010-0400)
 EasiVial PEG bietet die gleiche 12-Punkt-Kalibrierung in drei gebrauchsfertigen
- Probenflaschen mit eingewogener Substanz für polare Lösemittel und andere Kalibrierungen (2-ml-Probenflaschen: PL2070-0201, 4-ml-Probenflaschen: PL2070-0200)


Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Bestellinformationen

Beschreibung	BestNr.
PLgel 3 µm MIXED-E, 7,5 x 300 mm	PL1110-6300
PLgel 3 µm MiniMIX-E, 4,6 x 250 mm	PL1510-5300
PLgel 3 µm-Vorsäule, 7,5 x 50 mm	PL1110-1320
PLgel 3 µm MiniMIX-E-Vorsäule, 4,6 x 50 mm	PL1510-1300

Typische Applikationen


Präpolymere, Polyole, Harze, Siloxane

Bedingungen

Säulen: 2x PLgel 3 µm MIXED-E, 7,5 x 300 mm

Mobile Phase: THF Flussrate: 1,0 ml/min

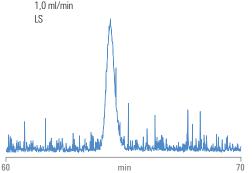
Polyesterharze

PLGEL MIXED-LS

Verhindert das Austreten von Partikeln und verbessert so die Datenqualität bei Lichtstreudetektion

- · Unmittelbare Verbesserung der Datenqualität.
- · Keine Konditionierung, daher Einsparung von Zeit und Kosten für Lösemittel.
- Maximiert die Möglichkeiten eines Lichtstreudetektors.

Bei PLgel MIXED-LS kommt ein unternehmenseigenes Polymerisationsverfahren zum Einsatz, mit dem LS-Rauschen durch Austreten von Nanopartikeln aus GPC-Säulen verhindert werden kann. Die Säulen sind ohne stundenlanges Waschen direkt aus der Verpackung gebrauchsbereit.


Typische Applikationen

Polyethylene, Polyolefine

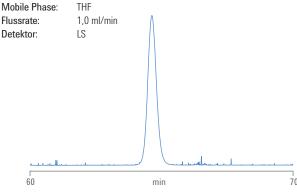
Bedingungen

Säulen: Herkömmliche GPC-Säule

Mobile Phase: 1,0 ml/min Flussrate: Detektor:

Analyse einer Polystyrolprobe mit Nanopartikelrauschen von einer herkömmlichen GPC-Säule

Tipp


Auch ein Lichtstreudetektor muss kalibriert werden.

Agilent bietet eine komplette Reihe von Polymerstandards mit enger Molekulargewichtsverteilung, siehe Produktleitfaden GPC/SEC-Standards, Publikation 5990-7996DEE.

Säulen: PLgel 10 μm MIXED-B LS, 7,5 x 300 mm

Flussrate: Detektor: LS

Gleiche Probe auf der PLgel MIXED-B LS: Das Nanopartikelrauschen ist verschwunden.

Beschreibung	Linearer MW-Arbeitsbereich (g/mol) (PS)	Garantierte Effizienz (p/m)	BestNr.
PLgel 10 µm MIXED-B LS, 7,5 x 300 mm	500 bis 10 000 000	>35 000	PL1110-6100LS
PLgel 20 µm MIXED-A LS, 7,5 x 300 mm	2000 bis 10 000 000	>18 000	PL1110-6200LS
PLgel 10 µm-Vorsäule, 7,5 x 50 mm			PL1110-1120
PLgel 20 µm-Vorsäule, 7,5 x 50 mm			PL1110-1220

PL HFIPGEL

Verbesserte Leistung mit HFIP

- Optimierter Trennbereich sorgt für ausgezeichnete Leistungen ohne Artefakte.
- Hoch beständige Säulenpackungen verlängern die Lebensdauer der Säule während der Exposition gegenüber HFIP.
- Vermeiden Sie verzerrte Kalibrierungskurven, Verschiebungen, Schultern und eine unzureichende Auflösung durch HFIP und ähnliche Lösemittel.

Hexafluorisopropanol (HFIP) ist ein einzigartiges Lösemittel, mit dem schwierige Polyester, Polyamide (Nylon), Polyethylenterephthalat (PET) und Poly(laktid-co-glykolid) (PLGA) nahezu bei Umgebungstemperatur mit GPC analysiert werden können.

Agilent hat PL HFIPgel für das Arbeiten mit HFIP und anderen polaren fluorierten Lösemitteln wie Trifluorethanol entwickelt — mit der hohen Leistung der PLgel-Produktlinie von Agilent.

Eigenschaften

nominale Partikelgröße: 9 µm

Linearer Molkulargewichts-

Arbeitsbereich: 200 bis 2 000 000 g/mol (PS-Äquivalent)

Garantierte Trennleistung

der Säule: >30~000~p/m

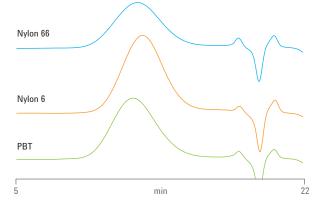
Typischer Druck: 1 ml/min (ID: 7,5 mm): \approx 10 bar (145 psi)

pro 300 mm (HFIP bei 40 °C)

Maximale Flussrate:7,5 mm ID: 1,5 ml/minMaximaldruck:150 bar (2175 psi)Maximale Temperatur:50 °C (HFIP)Empfohlene Anzahl Säulen/Sets:2x 300 mm

Empfohlene Kalibriersubstanzen:

- EasiVial PM in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung (2-ml-Probenflaschen: PL2020-0201, 4-ml-Probenflaschen: PL2020-0200)
- Polymethylmethacrylat (PMMA)-Kit M-M-10 (PL2020-0101)


Typische Applikationen

Polyester, Polyamide, Polylaktid/-glykolid-Copolymere

Bedingungen

 $\begin{array}{lll} \textbf{S\"{a}ulen:} & 2x \ PL \ HFIPgel, \ 7.5 \ x \ 300 \ mm \\ \textbf{Mobile Phase:} & HFIP + 20 \ mM \ NaTFAc \\ \end{array}$

Flussrate: 1,0 ml/min
Temperatur: 40 °C
Detektor: RI

Niedrigtemperaturanalyse schwieriger Polyamide und Polyester

Tipp

Sparen Sie teures HFIP durch Lösemittel-Recycling und mithilfe von Säulen mit dem kleineren Durchmesser von 4,6 mm.

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Beschreibung	BestNr.
PL HFIPgel, 4,6 x 250 mm	PL1514-5900HFIP
PL HFIPgel, 7,5 x 300 mm	PL1114-6900HFIP
PL HFIPgel-Vorsäule, 7,5 x 50 mm	PL1114-1900HFIP
PL HFIPgel-Vorsäule, 4,6 x 50 mm	PL1514-1900HFIP

ENVIROPREP-SÄULEN

Aufreinigung von Umweltproben mit EPA-Methoden

- · Hohe Beladbarkeit mit Proben sorgt für eine effektive Konzentration von Substanzen im Spurenbereich.
- Ermöglicht die Automation von Verfahren zur Probenaufreinigung.
- Schmale Peaks ermöglichen sowohl eine hohe Reinheit als auch eine hohe Wiederfindung.

Agilent EnviroPrep-Säulen bieten eine unkomplizierte, automatisierte Aufreinigung von Proben einschließlich Bodenextrakten und Lebensmittel- und biologischen Proben.

Interferenzen verursachende große Moleküle, Öle, Huminsäuren und Terpenoide können leicht aus den Proben entfernt werden, praktisch ohne Verlust der Zielmoleküle.

Im Vergleich zu manuell gepackten Glassäulen, wie für die EPA-Methode 3640A, sorgen die vorgepackten EnviroPrep-Edelstahlsäulen für eine erhebliche Verbesserung der Geschwindigkeit und der Reproduzierbarkeit.

Eigenschaften

nominale Partikelgröße: 10 µm 100 Å Porengröße:

4000 g/mol (PS-Äquivalent) Ausschlussgrenze:

Garantierte Trennleistung

der Säule: >25 000 p/m

Typischer Druck: 10 ml/min (ID: 25 mm): ≈ 8 bar (116 psi)

> pro 300 mm (THF bei 20 °C)

Maximale Flussrate: ID von 25 mm: 16,5 ml/min Maximaldruck:

150 bar (2175 psi)

220 °C Maximale Temperatur:

Empfohlene Anzahl Säulen/Sets: 1-2x 300 mm; 1x 300 mm + 1x 150 mm

Empfohlene Kalibriersubstanzen:

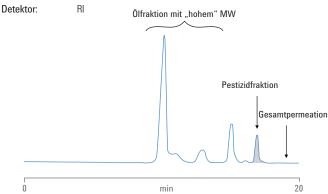
• EasiVial PS-L in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung (2-ml-Probenflaschen: PL2010-0401, 4-ml-Probenflaschen: PL2010-0400)

• EPA-Testmischung (siehe Publikation 5991-1588EN)

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

Case Study: An Automated System for the Routine Cleanup of Environmental Samples Prior to Instrument Analysis (Publikation 5991-5321EN).

Bedingungen


Säulen: EnviroPrep, 25 x 300 mm EnviroPrep, 25 x 150 mm Mobile Phase: Dichlormethan Flussrate: 10 ml/min Detektor: UV, 254 nm Peakerkennung mg/l 1. Maisöl 25 000 2. Bis(2-ethylhexyl)phthalat 1000 200 3. Methoxychlor 4. Perylen 20 5. Schwefel 80

Schnelle Trennung der Testmischung für EPA-Methode 3640A

Bedingungen

Säulen: 2x EnviroPrep, 25 x 300 mm

Mobile Phase: THF (stabilisiert) 10 ml/min Flussrate

Schnelle und vollständige Wiederfindung eines Hexachlorcyclohexan-Zusatzes in Makrelen-Extrakt

Beschreibung	BestNr.
EnviroPrep, 25 x 150 mm	PL1210-3120EPA
EnviroPrep, 25 x 300 mm	PL1210-6120EPA

PLGEL INDIVIDUAL PORE SIZE-SÄULEN MIT INDIVIDUELLEN PORENGRÖSSEN

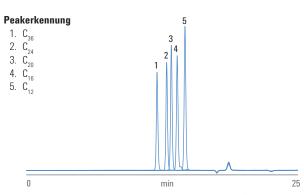
Hohe Auflösung in einem spezifischen Molekulargewichtsbereich

- · Höchste Auflösung über einen schmalen Molekulargewichtsbereich.
- · Hohe Effizienz verbessert Datenqualität.
- Schnelle Analysen mit weniger Säulen ermöglichen die Einsparung von Zeit und Geld.

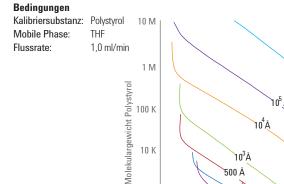
GPC-Säulen mit individueller Porengröße bieten eine hohe Auflösung über einen schmalen Molekulargewichtsbereich. Der lineare Teil der Kalibrierungskurve, in dem die Steigung am kleinsten ist, definiert den Molekulargewichtsbereich, in dem die Auflösung optimal ist.

Tipp

Säulen mit individuellen Porengrößen haben nichtlineare Retentionszeiten und die Rohchromatogramme spiegeln nicht unbedingt die Molekulargewichtsverteilung wieder. Daher ist eine Kalibrierungskurve für korrekte Molekulargewichtsdaten äußerst wichtig.


Agilent bietet eine Reihe von eng verteilten Polymerstandards, siehe Produktleitfaden GPC/SEC-Standards, Publikation 5990-7996DEE.

Bedingungen


Säulen: 2x PLael 3 um 100 Å, 7.5 x 300 mm

Mobile Phase: TCB + 0,015 % BHT 0,8 ml/min Flussrate: 145 °C Temperatur:

1260 Infinity II HTGPC (RI) Detektor:

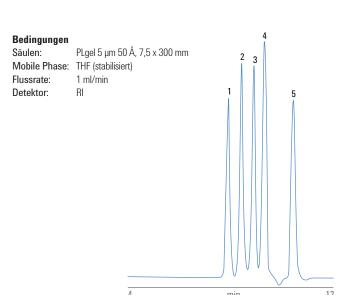
Basislinientrennung von linearen aliphatischen Kohlenwasserstoffen

10 K

1 K

100

10⁶Å


10

500 Å 100 Å

6

Elutionsvolumen (ml pro 30 cm)

Kalibrierungskurve

Analyse von vier Dialkylphthalaten

PLGEL INDIVIDUAL PORE SIZE-SÄULEN MIT INDIVIDUELLEN PORENGRÖSSEN

Bestellinformationen

PLgel Individual Pore Size-Säulen, 7,5 x 300 mm

			Garantierte Effizienz		
Beschreibung	Porengröße (Å)	MW-Bereich (g/mol) (PS)	(p/m)	BestNr.	Höchsttemperatur
PLgel 3 μm	100	bis 5000	>100 000	PL1110-6320	
PLgel 5 μm	50	bis 1500	>65 000	PL1110-6515	
PLgel 5 μm	100	bis 5000	>65 000	PL1110-6520	
PLgel 5 μm	500	500 bis 25 000	>65 000	PL1110-6525	150 °C
PLgel 5 μm	10³	500 bis 60 000	>50 000	PL1110-6530	
PLgel 5 μm	10 ⁴	10000 bis 450 000	>50 000	PL1110-6540	
PLgel 5 μm	10 ⁵	60 000 bis 1 700 000	>50 000	PL1110-6550	
PLgel 10 µm	50	bis 1500	>35 000	PL1110-6115	
PLgel 10 µm	100	bis 5000	>35 000	PL1110-6120	
PLgel 10 μm	500	500 bis 25 000	>35 000	PL1110-6125	
PLgel 10 µm	10³	500 bis 60 000	>35 000	PL1110-6130	220 °C
PLgel 10 µm	10 ⁴	10000 bis 450 000	>35 000	PL1110-6140	
PLgel 10 µm	10 ⁵	60 000 bis 1 700 000	>35 000	PL1110-6150	
PLgel 10 μm	10 ⁶	600 000 bis 10 000 000	>35 000	PL1110-6160	

PLgel-Vorsäulen, 7,5 x 50 mm

Beschreibung	BestNr.
PLgel 3 µm-Vorsäule	PL1110-1320
PLgel 5 µm-Vorsäule	PL1110-1520
PLgel 10 μm-Vorsäule	PL1110-1120
PLgel 20 µm-Vorsäule	PL1110-1220

PLGEL PREPARATIVE-SÄULEN

Fraktionierung der Proben nach Molekülgröße in Lösung

- Isolierte Molekulargewichtsfraktionen für chromatographische, IR-, Röntgen-, chemische und physikalische Untersuchungen.
- 10-µm-Partikel bieten eine größere Geschwindigkeit, Reinheit und Wiederfindung.
- · Hohe Porenvolumina trennen Milligramm- bis Gramm-Mengen.

Die präparative GPC erlaubt die Isolierung von Fraktionen eines bestimmten Molekulargewichts von verschiedenen Proben für die weitere Analyse. Präparative PLgel-10-µm-Partikel bieten sehr hohe Kapazitäten und Effizienzen, wobei der Rückdruck niedrig bleibt.

Probenvorbereitung:

Mit GPC kann die Aufreinigung und Konzentration von Lebensmittel-, biologischen und Umweltproben nach Lösemittelextraktion leicht automatisiert werden.

Moderne Edelstahlsäulen (25 x 300 mm) ersetzen die manuell gepackten Glassäulen bei Methoden wie:

- EPA-Methode 3640A: Probenvorbereitung für Pestizidnachweis.
- Chinese Pharmakopöe (CHP): Probenvorbereitung für Pestizidnachweis.
- Europäische Pharmakopöe (Ph. Eur.) Bestimmung von Mono-, Di-, Triglyceriden und Glycerol.

Polymeranalyse:

Polymerproben können fraktioniert werden, um Additive, Rückstände oder Molekulargewichtsbereich-Schnitte für eine separate spektroskopische, chemische, elektrochemische oder physikalische Analyse zu isolieren.

Umgekehrt können die Eigenschaften eines Polymers nach Entfernung spezifischer Molekulargewichte oder Verbindungen aus der Formulierung untersucht werden.

PLGEL PREPARATIVE-SÄULEN

Typische Applikationen

Polymerfraktionierung, Isolierung von Komponenten, Vereinfachung von Mischungen

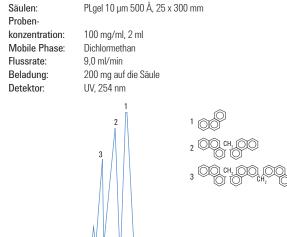
Eigenschaften

nominale Partikelgröße: 10 µm (PLgel), 6 µm (Oligopore)

Garantierte Trennleistung

der Säule: >30~000~p/m, >55~000~(Oligopore)Typischer Druck: $10~ml/min~(ID: 25~mm): \approx 8~bar~(116~psi)$

pro 300 mm (THF bei 20 °C)


Maximale Flussrate:ID von 25 mm: 16,5 ml/minMaximaldruck:150 bar (2175 psi)Maximale Temperatur:220 °C, 110 °C (Oligopore)

Empfohlene Anzahl Säulen/Sets: 1-2x 300 mm

Empfohlene Kalibriersubstanzen:

- EasiVial in drei gebrauchsfertigen Probenflaschen mit eingewogener Substanz für eine bequeme 12-Punkt-Kalibrierung
- EasiCal für eine einfache 10-Punkt-Kalibrierung zum Einrühren

Siehe Publikation 5990-7996DEE, Produktleitfaden GPC/SEC-Standards

20

Fraktionierung eines Öldestillats

Bedingungen

Bestellinformationen

PLgel Preparative-Säulen

Beschreibung	MW-Bereich (g/mol) (PS)	BestNr.
InfinityLab OligoPore, 6 μm, 25 x 300 mm	bis 3300	PL1213-6520
EnviroPrep, 25 x 150 mm	bis 5000	PL1210-3120EPA
EnviroPrep, 25 x 300 mm	bis 5000	PL1210-6120EPA
PLgel 10 μm 50 Å, 25 x 300 mm	bis 1500	PL1210-6115
PLgel 10 μm 100 Å, 25 x 300 mm	bis 5000	PL1210-6120
PLgel 10 μm 500 Å, 25 x 300 mm	500 bis 25 000	PL1210-6125
PLgel 10 μm 103 Å, 25 x 300 mm	500 bis 60 000	PL1210-6130
PLgel 10 μm 104 Å, 25 x 300 mm	10000 bis 550 000	PL1210-6140
PLgel 10 μm 105 Å, 25 x 300 mm	60 000 bis 1 700 000	PL1210-6150
PLgel 10 μm 106 Å, 25 x 300 mm	600 000 bis 10 000 000	PL1210-6160
PLgel 10 μm MIXED-B, 25 x 300 mm	500 bis 10 000 000	PL1210-6100
PLgel 10 μm MIXED-D, 25 x 300 mm	200 bis 400 000	PL1210-6104
Präparative PLgel-Vorsäule, 25 x 25 mm		PL1210-1120

PUBLIKATIONEN VON AGILENT

Weiterführende Literatur

GPC/SEC-Publikation	Publikationsnummer
Einführungen	
An introduction to gel permeation chromatography and size exclusion chromatography	5990-6969EN
Calibrating GPC/SEC columns - a guide to best practice	5991-2720EN
Step-by-step method development in GPC	5991-7272EN
Polymer-to-solvent reference table for GPC/SEC	5991-6802EN
Instrument setup for Fast GPC	5991-7191EN
Handbücher zu Applikationen	
Analysis of polymers by GPC/SEC - energy & chemicals applications	5991-2517EN
Analysis of polymers by GPC/SEC - food applications	5991-2029EN
Analysis of polymers by GPC/SEC - pharmaceutical applications	5991-2519EN
Excipient analysis by GPC/SEC and other LC techniques	5990-7771EN
Biodegradable polymers - analysis of biodegradable polymers by GPC/SEC	5990-6920EN
Analysis of engineering polymers by GPC/SEC	5990-6970EN
Analysis of elastomers by GPC/SEC	5990-6866EN
Analysis of polyolefins by GPC/SEC	5990-6971EN
Low molecular weight resins - Analysis of low molecular weight resins and prepolymers by GPC/SEC	5990-6845EN
Produktleitfäden	
Wässrige und polare GPC/SEC-Säulen von Agilent	5990-7995DEE
GPC/SEC-Standards	5990-7996DEE

AGILENT GPC/SEC-ANALYSESYSTEME

Das Agilent 1260 Infinity II GPC/SEC-System und das 1260 Infinity II Multidetektor-GPC/SEC-System gehören zu Agilent InfinityLab. InfinityLab ist ein optimiertes Portfolio von Geräten, Säulen und Zubehör für die LC, die nahtlos zusammenarbeiten und für höchste Effizienz und Leistung sorgen.

Das Agilent 1260 Infinity II GPC/SEC-System wurde für die Anforderungen moderner Polymeranalytiker entwickelt.

Bestandteil des Systems ist der Infinity II Brechungsindexdetektor, der die Auflösung und die Geschwindigkeit bahnbrechend verbessert. Der neu entwickelte Flüssigprobengeber bietet einen höheren Probendurchsatz im unbeaufsichtigten Betrieb, während der Thermostat für mehrere Säulen eine genaue Temperatursteuerung erlaubt und damit das Rauschen und die Basisliniendrift des Detektors auf ein Minimum begrenzt. Die aufgerüstete isokratische Pumpe sorgt für eine bessere Flusspräzision und optimiert die Reproduzierbarkeit und Genauigkeit der Molekulargewichtsmessungen.

Das Agilent 1260 Infinity II Multidetektor-GPC/SEC-System ist die erste Wahl für eine genaue und reproduzierbare Polymeranalyse. Beliebige Kombination von Lichtstreuungs-, Viskosimetrie- und Brechungsindexdetektion zur Ermittlung von absoluten Molekulargewichten und -größen.

Das System liefert umfangreiche Informationen über die Polymerstruktur. Es ist möglich, bestimmte Eigenschaften wie Verzweigungen — die die Verarbeitungsmerkmale und physikalischen Eigenschaften beeinflussen — zu identifizieren und zu quantifizieren. Die präzise Temperatursteuerung minimiert Äquilibrierungszeiten und maximiert den Probendurchsatz.

Die innovativen InfinityLab Verbrauchsmaterialien machen Ihre Arbeit leichter

- Müheloser Umgang mit der mobilen Phase dank ergonomischer, sicher handhabbarer Lösemittelflaschen.
- Kein Austreten von gefährlichen Lösemitteldämpfen in die Luft dank der InfinityLab Stay Safe Verschlusskappen.
- Sichere Drainage von Lösemitteln mit dem InfinityLab Drainagefitting.
- Leckagefreie Säulenverbindungen mit InfinityLab Quick Connect Fittings.

Kalibrierung ist für zuverlässige und genaue GPC-Daten entscheidend wichtig. Mehr Infos in der Einführung:

Calibrating GPC Columns—A Guide to Best Practice

Publikation 5991-2720EN

Mehr Infos

www.agilent.com/chem/gpcresources

Online einkaufen

www.agilent.com/chem/store

Hier finden Sie Ihr Agilent Kundeninformationszentrum in Ihrem Land:

www.agilent.com/chem/contactus

Deutschland

0800 603 1000

CustomerCare_Germany@agilent.com

Europa

info agilent@agilent.com

Asien und Pazifik

inquiry_lsca@agilent.com

Indien

india-Isca marketing@agilent.com

Änderungen vorbehalten.

© Agilent Technologies, Inc. 2017 Gedruckt in den USA 1. Juli 2017 5990-7994DEE

